Abstract

Cells employ control strategies to maintain a stable size. Dividing at a target size (the "sizer" strategy) is thought to produce the tightest size distribution. However, this result follows from phenomenological models that ignore the molecular mechanisms required to implement the strategy. Here we investigate a simple mechanistic model for exponentially growing cells whose division is triggered at a molecular abundance threshold. We find that size noise inherits the molecular noise and is consequently minimized not by the sizer but by the "adder" strategy, where a cell divides after adding a target amount to its birth size. We derive a lower bound on size noise that agrees with publicly available data from six microfluidic studies on Escherichia coli bacteria.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call