Abstract

AbstractSilicone rubber is a good candidate as a carrier of small molecules in such applications as drug, fragrance and semiochemical delivery. When one matrix is loaded, the molecular interactions between the molecules and the matrix may affect their release rates. For this reason, it is important to investigate the effects of molecular interactions on release to better develop delivery systems with desirable release rates. In this study, the mass transfer and diffusion coefficients of three model molecules (i.e., octanol, octyl acetate, and octyl butyrate) were determined by monitoring their release from silicone rubber sheets loaded using headspace gas chromatography–mass spectrometry. Differential scanning calorimetry was used to characterize the plasticizing effects and Fourier transform infrared spectroscopy was used to characterize the molecular interactions. It was found that the release of octanol conformed to the Fickian diffusion pattern at 1 wt% initial concentration but deviated as the concentration increased due to hydrogen bonding between octanol and the silanol group of the silica filler. When two small molecules were released simultaneously, the effects of one molecule on the diffusion coefficient of the other differed, a result explained by the competing effects of plasticizing and hydrogen bonding.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call