Abstract
Poly(methyl methacrylate)/poly(styrene-co-maleic anhydride) (PMMA/SMA) blends with various compositions were prepared through solution casting and melt blending. Two preparation routes, solution casting and melt blending, were used to achieve different degrees of molecular entanglement in the samples with solution casting giving rise to a lower degree of entanglement. Therefore, the effect of molecular entanglement on molecular dynamics and phase-separation kinetics of PMMA/SMA blends was investigated by using broadband dielectric spectroscopy and small-angle laser light scattering (SALLS). Molecular entanglement is found to have a pronounced effect on the α-relaxation process. The glass transition temperature (Tg) is related to the degree of entanglement and a higher degree of entanglement can result in a higher Tg which shifts to a higher temperature after annealing. The relaxation time (τ) of the α-relaxation process is lower for lower degrees of entanglement. Neither the dynamics nor the distribution width of the β-relaxation process is affected by degree of entanglement, regardless of the blend composition. The kinetics of phase-separation by spinodal decomposition (SD) in PMMA/SMA blends are however significantly influenced by the degrees of entanglement with decomposition rate being higher at lower degrees of entanglement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.