Abstract

Because of the worldwide environmental pollution problem with petroleum polymers, soy protein polymers have been considered as alternatives for biodegradable plastics. The objective of this research was to study the curing behavior of soy protein isolates (SPIs) for that application. The molding variables of temperature, pressure, and time and curing quality factors of tensile strength, strain, and water resistance were evaluated. The maximum stress of 42.9 MPa and maximum strain of 4.61% of the specimen were obtained when SPI was molded at 150°C and 20 MPa for 5 min. The water absorption of the specimen decreased as molding temperature and time increased. Glycerol greatly improved the flexibility of the specimen but decreased its strength. For SPI with 25% glycerol added, the maximum stress and strain of about 12 MPa and 140%, respectively, were achieved when the specimen was molded at 140°C for 5 min. Molding temperature, pressure, and time are major parameters influencing the curing quality of soy protein polymers. At fixed pressure, the molding temperature and time had significant interactive effects on curing quality. At high temperature (e.g., at 150°C) it took about 3 min to reach optimum curing quality; however, at low temperature (120°C) it took about 10 min to reach optimum curing quality. The maximum strength and strain of the cured protein polymer occurred at the molding temperature close to its phase transition temperature or about 40°C below its exothermic temperature. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 2595–2602, 1999

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.