Abstract

The effects of mold temperature and pouring temperature on hot tearing formation and contraction behavior of a modified Al-Cu alloy 206 (M206) have been studied. The experiments were conducted using a newly developed Constrained Rod Mold, which simultaneously measures the contraction force/time/temperature during solidification for the restrained casting or linear contraction/time/temperature for a relaxed casting. Three mold temperatures [473 K, 573 K, and 643 K (200 °C, 300 °C, and 370 °C)] and three pouring temperatures [superheat of 50 K, 100 K, and 150 K (50 °C, 100 °C, and 150 °C)] were studied, and alloy A356 was used as reference for comparison. The results confirm that alloy A356 has high resistance to hot tearing. Hot tearing did not occur for the three mold temperatures evaluated, whereas alloy M206 exhibited significant hot tearing for the same casting and mold temperature conditions. Hot tearing severity and linear contraction in alloy 206 decreased significantly with increasing mold temperature. Increasing pouring temperature increases hot tearing in alloy M206, but the effect is not as significant as that of mold temperature. The results and underlying mechanism of these effects are discussed in correlation with the thermomechanical properties and microstructures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.