Abstract

AbstractStarch, a hydrophilic renewable polymer, has been used as a filler for environmentally friendly plastics for about 2 decades. Starch granules become swollen and gelatinized when water is added or when they are heated, and water is often used as a plasticizer to obtain desirable product properties. The objective of this research was to characterize blends from starch and poly(lactic acid) (PLA) in the presence of various water contents. The effects of processing procedures on the properties of the blends were also studied. Blends were prepared with a lab‐scale twin‐screw extruder, and tensile bars for mechanical testing were prepared with both compression and injection molding. Thermal and mechanical properties of the blends were analyzed, and the morphology and water absorption of the blends were evaluated. The initial moisture content (MC) of the starch had no significant effects on its mechanical properties but had a significant effect on the water absorption of the blends. The thermal and crystallization properties of PLA in the blend were not affected by MC. The blends prepared by compression molding had higher crystallinities than those prepared by injection molding. However, the blends prepared by injection molding had higher tensile strengths and elongations and lower water absorption values than those made by compression molding. The crystallinities of the blends increased greatly with annealing treatment at the PLA second crystallization temperature (155°C). The decomposition of PLA indicated that PLA was slightly degraded in the presence of water under the processing temperatures used. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 3069–3082, 2001

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.