Abstract

Cover crop (CC) decomposition and subsequent release of nitrogen (N) are highly influenced by residue water potential (ψ) and temperature (T). To evaluate how carbon (C) and N mineralization from surface-applied CC residues responds to changes in ψ and T, a controlled microcosm experiment was conducted for 150 days with three CC residues (early-killed cereal rye (Secale cereale L.), late-killed cereal rye, late-killed crimson clover (Trifolium incarnatum L.), and a soil-alone control) under different ψ (−0.03, −1.5, −5, and −10 MPa) and T (15, 25, and 35 °C) conditions. Headspace gas was sampled periodically to determine carbon dioxide (CO2) and nitrous oxide (N2O) emissions. Soil inorganic N was determined by destructive sampling at 15, 30, 60, 100, and 150 days. Temporal dynamics in C and N mineralization from surface-applied CC residues were adequately described by first-order rate kinetic models. Early-killed rye and crimson clover (low C:N) residues decomposed quickly and mineralized N, whereas, late-killed rye residue (high fiber content and C:N) immobilized N. The normalized values of C and N mineralized from surface-applied CC residues increased exponentially with increasing ψ from −10.0 to −0.03 MPa. Increasing T from 15 to 35 °C further amplified the effect of ψ, suggesting a strong interactive effect of ψ and T on C and N mineralization from CC residues. Mathematical equations were developed to describe these interactive effects. Existing computer simulation models (e.g., CERES-N) could be improved by integrating these equations to simulate the effect of environmental conditions on surface-applied CC residue decomposition and N mineralization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.