Abstract

The flame retardancy of layered double hydroxides (LDHs) correlates with their structure and dispersion in a polymeric matrix. To improve the flame retardant effectiveness of Mg-Al LDH in polyethylene (PE), 2-carboxy ethyl (phenyl) phosphinic acid (CEPPA) was adopted as a flame retardant modifier to prepare CEPPA-intercalated LDH (CLDH) by the regeneration method, which was then exfoliated in PE by melt blending in the form of a masterbatch prepared from solution mixing. By compounding CLDH with intumescent flame retardant (IFR) composed of ammonium polyphosphate (APP) and pentaerythritol (PER), the thermal degradation and combustion behaviors of the flame retardant PE-based composites were investigated to reveal the flame retardant mechanism between CLDH and IFR in PE. The reactions between CLDH and IFR were revealed to make a predominant contribution to the compact and fully developed char of PE/IFR/CLDH, which enhanced the flame retardancy of the composites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.