Abstract

Rice straw derived biochar shows low-cost superiority as a potential adsorbent in tetracycline (TC) removal, but limited by its poor adsorption capacity and N, P leaking risk. Herein, an alkali-acid combined and magnetization method was proposed for its modification. The sorption kinetic and isotherm data showed modification enhanced the performance for tetracycline removal with adsorption capacity up to 98.33 mg·g−1. The strong adsorption mechanisms were dominated by hydrogen bonding and pore-filling effect due to the increase of specific surface area and pore volume. Furthermore, the effect of pH was insignificant over a pH range from 3 to 10. The strong competition between ionic and TC was identified, where Ca2+ and PO43− markedly inhibited the sorption. The enhanced TC adsorption, strong N and P removal, easy magnetic recovery, and good reusability in water samples entrusted it with good potential for wastewater treatment and rice straw resource disposal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.