Abstract

Background and purposeHigh-density dental fillings pose a non-negligible impact on head and neck cancer treatment. For proton therapy, stopping power ratio (SPR) prediction will be significantly impaired by the associated image artifacts. Dose perturbation is also inevitable, compromising the treatment plan quality. While plenty of work has been done on metal or amalgam fillings, none has touched on composite resin (CR) and glass ionomer cement (GIC) which have seen an increasing usage. Hence, this work aims to provide a detailed characterisation of SPR and dose perturbation in proton therapy caused by CR and GIC. Materials and methodsFour types of fillings were used: CR, Fuji Bulk (FB), Fuji II (FII) and Fuji IX (FIX). The latter three belong to GIC category. Measured SPR were compared with SPR predicted using single-energy computed tomography (SECT) and dual-energy computed tomography (DECT). Dose perturbation of proton beams with lower- and higher-energy levels was also quantified using Gafchromic films. ResultsThe measured SPR for CR, FB, FII and FIX were 1.68, 1.77, 1.77 and 1.76, respectively. Overall, DECT could predict SPR better than SECT. The lowest percentage error achieved by DECT was 19.7 %, demonstrating the challenge in estimating SPR, even for fillings with relatively lower densities. For both proton beam energies and all four fillings of about 4.5 mm thickness, the maximum dose perturbation was 3 %. ConclusionThis study showed that dose perturbation by CR and GIC was comparatively small. We have measured and recommended the SPR values for overriding the fillings in TPS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.