Abstract

Physalis peruviana L. (Cape gooseberry) is a source for a variety of phytocompounds such as withanolides, withanone, withaferin A, and withanolide A. These withanolides are high-value drug candidates due to their various pharmacological properties. To meet the increasing demands for these compounds, plant cell technology offers a reliable alternative. Exogenous addition of elicitors is considered the most effective strategy for enhanced production of secondary metabolites. In this study, we investigated changes in withanolide accumulation and characterized the gene expression level changes of squalene synthase enzyme in P. peruviana shoot cultures exposed to mild nonlethal heat stress (45°C for 2 and 5 h) and UV-B radiation (313 nm for 15 min and 3 h). We demonstrated significant changes in withanolide content with 7.86- and 12.5-fold increases for 2- and 5-hmild high-temperature exposure times, respectively. Exposure to UV-B also changed the withanolide content by 7.22- and 7-fold increases for 15 min and 3 h exposure times, respectively. The relative expression level of squalene synthase gene showed consistent results with1.80- and 10.13-fold increases in withanolide for 2- and 5-h mild high-temperature exposure times, and 1.34- and 2.01-fold increases with 15 min and 3 h UV-B exposure times, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.