Abstract

The effects of modal interactions and nonlinear response characteristics can hamper implementation of high power ultrasonic technologies, due to the resulting modal coupling, increased stress, audible noise levels and poor control of the operating response. These different adverse responses are illustrated by characterising the vibration behaviour of single-blade and multi-blade ultrasonic cutting systems. This paper proposes design strategies to eliminate the effects of modal interactions, by focusing on reducing the number of vibration modes, and to reduce the effects of nonlinear responses, by serial coupling of tuned components with appropriate cubic softening and hardening response characteristics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.