Abstract
The porous Ti-Mo alloys were prepared by microwave sintering, and the effects of Mo contents on the pore structure, phase composition, compressive strength, elastic modulus, bending strength, corrosion resistance and cytocompatibility of porous Ti-Mo alloys were investigated. The results show that the porous Ti-Mo alloys are composed of α phase and β phase, and the volume fraction of β phase increases with increasing the Mo contents. The amount of Kirkendall pores distributed over the porous Ti-Mo alloys skeleton increases with increasing the Mo contents, which greatly increases the porosities and pore sizes of the porous Ti-Mo alloys. Correspondingly, all of the compressive strength, elastic modulus and bending strength of the porous Ti-Mo alloys decrease with increasing the Mo contents. The porous Ti-Mo alloys present excellent corrosion resistance in the Hank's solution due to the oxidation film of TiO2, MoO2 and MoO3 naturally formed on the surface, and the Mo contents have no obvious effect on the corrosion resistance. The cell viabilities of the porous Ti-Mo alloys are higher than 94%, indicating the porous Ti-Mo alloys possess favorable cytocompatibility. Moreover, the porous Ti-Mo alloys are beneficial to the spread, proliferation and differentiation of osteoblast-like cells, and the Mo contents have no significant effect on the cytocompatibility of the porous Ti-Mo alloys.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.