Abstract
The work deals with the preparation of Zinc Oxide (ZnO) thin films on microscopic glass substrate by spray pyrolysis technique. The systematic study on the influence of Mn doping up to 15% has been performed. The structural studies revealed that pure and doped film has hexagonal structure. In order to reduce the internal strain due to Mn doping, the crystallite size decreases. The atomic force microscopy (AFM) measurement shows the decrease in grain size and roughness with doping. The resistivity curve shows a clear hump corresponding to smaller Mn doping ([Formula: see text]) around [Formula: see text]. This hump was found to reduce with the increase in Mn concentration and for [Formula: see text], beyond which it vanishes completely. This is attributed to critical behavior of resistivity and may be due to the scattering of carriers by magnetic spin fluctuation via exchange interaction. The optical measurement shows the shift in absorption edge of Mn doped ZnO films toward the longer wavelength side. This correlates the reduction in grain size as a function of Mn concentration. The optical bandgap goes down, whereas refractive index increases with dopant concentration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.