Abstract
Doping calcium phosphates with trace elements that exist in bone tissues is beneficial in terms of cell–material interactions and in vivo performance of the bone grafts made thereof. Manganese (Mn) is an essential element for normal growth and metabolism of bone tissues, but studies reporting the effects of Mn-doping calcium phosphates are scarce. The present study investigated the influence of Mn-doping on the structure, morphology and biological properties of β-tricalcium phosphate [β-Ca3(PO4)2] (β-TCP). Mn-doped (MnTCP) powders, with Mn contents varying from 0 to 10mol%, were obtained through an aqueous precipitation method followed by heat treatment at 800°C. The successful incorporation of Mn into β-TCP structure was proved through quantitative X-ray diffraction (XRD) phase analysis coupled with structural Rietveld refinement. Increasing Mn concentrations led to decreasing trends of a- and c-axis lattice parameters, and Mn-doping also significantly affected the morphology of β-TCP powders. In vitro proliferation and differentiation assays of MC3T3-E1 osteoblastic-like cells, grown in the presence of the powders, revealed that the biological benefits of Mn-doped β-TCP are limited to lower Mn incorporation levels and potentially related to their surface microstructure. The Mn1-βTCP composition revealed the best set of bioactivity properties, potentially a good candidate for future applications of β-TCP materials in osteoregeneration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.