Abstract
The effects of clay dose and mixing energy on the efficiency of vegetable oil sedimentation by clay are investigated. The sedimentation efficiency increased with increasing clay dose to a maximum of about 80% of added oil. The maximum sedimentation efficiency was achieved at a lower clay dose, and the sedimentation efficiency was greater for a given clay dose when the oil was present as a thick oil film rather than as a thinner film. Sedimentation efficiency was relatively constant for mixing energies less than about 0.01 m2 s−3 (0.01 W kg−1) but decreased dramatically at higher energy dissipation rates. Mixing energy may not be an important factor in determining the effectiveness of this response alternative because energy dissipation rates in natural surface water bodies under most typical conditions are less than 0.01 m2 s−3. The effects of oil film thickness and mixing energy on the efficiency of vegetable oil sedimentation suggests that vegetable oil–mineral aggregates (VOMA) form through a different mechanism to that of petroleum oil–mineral aggregates (OMA). One consequence of the different formation mechanisms is that VOMA are much larger than petroleum OMA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.