Abstract

In this study, the finite element modeling of the compact tension shear specimens has been used to evaluate the effects of overloading on fatigue crack growth with mixed-mode loading I+II. Element creation and modeling is done by CASCA software. FRANC2D was used for stress analysis and the determination of crack parameters. Life estimation of samples was done by using the software ETBX. To create the mixed-mode I+II, different loading angles of 0, 15, 45 and 75 degrees (with respect to normal direction to the crack surface) were used with various overloading ratios. The effects of residual stresses due to overloading with saving and restoring capabilities were considered as a separate loading. To confirm the modeling results, models were built with ABAQUS and also compared with the results of numerical and experimental data in the literature. There are good agreements in determining the path of the crack growth and life estimation. The effects of the loading direction, overloading ratio and its load ratio, combination of overloadings and their locations on the fatigue crack growth and life are investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.