Abstract

Although crown gear couplings are widely used in rotating machinery, very little is known about their contact behavior and load distribution characteristics. In this study, the manufacturing methods are presented for crown gear coupling. Complete geometrical mathematical models from tools to crown gear coupling are proposed based on the theories of differential geometry and gear mesh. Then, a high-fidelity finite element model verified by tooth contact analysis under light load is employed to investigate load distribution along the crown gear coupling interfaces. The effects of meshing position, torque, and angular misalignment are investigated on load distributions along with crowning amount depending on the displacement circle radius. Finally, it is observed that when the contact position is 0.2 times the width of the tooth, the radius of the displacement circle is the optimal result for the performance of the crown gear coupling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.