Abstract

To investigate the effects of miR-21 on paclitaxel-resistance in human breast cancer MCF-7/PR and SKBR-3/PR cells. Paclitaxel-resistant human breast cancer cell lines MCF-7/PR and SKBR-3/PR were established by stepwise selection in increasing concentration of paclitaxel. Cellular morphology, mRNA and protein level of MDR1, BCRP and MRP1 in MCF-7/PR and SKBR-3/PR cells were determined. The expression of Bax, Bcl-2 and miR-21 in parental and paclitaxel-resistant cells was detected by RT-PCR and Western blotting. The synthetic miR-21 inhibitor or miR-21 mimic were transfected into MCF-7/PR, SKBR-3/PR and MCF-7, SKBR-3 cells with Lipofectamine 2000. The miR-21 levels were determined by RT-PCR, and P-gp, Bcl-2 and Bax protein levels were examined by Western blotting. MTT assay was used to measure the cell viability, and flow cytometry was performed to analyze the cell cycle and apoptosis. The levels of MDR1, BCRP, MRP1, Bcl-2/Bax and miR-21 in MCF-7/PR and SKBR-3/PR cells were significantly higher than those in MCF-7 and SKBR-3 cells. The protein levels of P-gp, Bcl-2 were up-regulated, and Bax was down-regulated compared with parental cells. MiR-21 was significantly down-regulated after miR-21 inhibitor was transfected; and the levels of MDR1, BCRP, MRP1 and Bcl-2/Bax (P <0.05) were also down-regulated. MiR-21 inhibitors significantly suppressed G0/G1 transition of the cell cycle, and induced cell apoptosis in MCF-7/PR and SKBR-3/PR cells. MTT results showed that miR-21 inhibitors induced sensitivity of MCF-7/PR and SKBR-3/PR cells to paclitaxel. And miR-21 mimic can increase the expression of MDR1, Bcl-2/Bax and change cell morphology from parental cells to resistant cells. The established MCF-7/PR and SKBR-3/PR breast cancer cells show typical multidrug resistance characteristics, which can be used as the model for drug resistance study. Down-regulated miR-21 expression in MCF-7/PR and SKBR-3/PR breast cancer cells can enhance cell sensitivity to paclitaxel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.