Abstract

Fish communities of streams and rivers might be substantially subsidized by terrestrial insects that fall into the water. Although such animal-mediated fluxes are increasingly recognized, little is known about how anthropogenic perturbations may influence the strength of such exchanges. Intense land use, such as lignite mining, may impact a river ecosystem due to the flocculation of iron (III) oxides, thus altering food web dynamics. We compared sections of the Spree River in North-East Germany that were greatly influenced by iron oxides with sections located downstream of a dam where passive remediation technologies are applied. Compared to locations downstream of the dam, the abundance of benthic macroinvertebrates at locations of high iron concentrations upstream of the dam was significantly reduced. Similarly, catch per unit effort of all fish was significantly higher in locations downstream of the dam compared to locations upstream of the dam, and the condition of juvenile and adult piscivorous pike Esox lucius was significantly lower in sections of high iron concentrations. Using an estimate of short-term (i.e., metabarcoding of the gut content) as well as longer-term (i.e., hydrogen stable isotopes) resource use, we could demonstrate that the three most abundant fish species, perch Perca fluviatilis, roach Rutilus rutilus, and bleak Alburnus alburnus, received higher contributions of terrestrial insects to their diet at locations of high iron concentration. In summary, lotic food webs upstream and downstream of the dam greatly differed in the overall structure with respect to the energy available for the highest tropic levels and the contribution of terrestrial insects to the diet of omnivorous fish. Therefore, human-induced environmental perturbations, such as river damming and mining activities, represent strong pressures that can alter the flow of energy between aquatic and terrestrial systems, indicating a broad impact on the landscape level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.