Abstract

Coexistence between trees and grasses in savannas is generally assumed to be due to a combination of partial niche separation for water acquisition and disturbances impacting the demography of trees and grasses. We propose a mechanism of coexistence solely based on the partitioning of the two dominant forms of mineral nitrogen (N), ammonium (NH4+) and nitrate (NO3−). We built a mean-field model taking into account the capacity of grasses and trees to alter nitrification fluxes as well as their relative preferences for NH4+ versus NO3−. Two models were studied and parameterized for the Lamto savanna (Cote d’Ivoire): In the first model, the nitrification only depends on the quantity of available NH4+, and in the second model the nitrification rate is also controlled by tree and grass biomass. Consistent with coexistence theories, our results show that taking these two forms of mineral N into account can allow coexistence when trees and grasses have contrasting preferences for NH4+ and NO3−. Moreover, coexistence is more likely to occur for intermediate nitrification rates. Assuming that grasses are able to inhibit nitrification while trees can stimulate it, as observed in the Lamto savanna, the most likely case of coexistence would be when grasses prefer NH4+ and trees NO3−. We propose that mineral N partitioning is a stabilizing coexistence mechanism that occurs in interaction with already described mechanisms based on disturbances by fire and herbivores. This mechanism is likely relevant in many N-limited African savannas with vegetation composition similar to the one at the Lamto site, but should be thoroughly tested through empirical studies and new models taking into account spatiotemporal heterogeneity in nitrification rates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.