Abstract

In natural micro-nanoscale porous media, the movable fluid porosity can effectively represent storage and permeable properties, but various mineral compositions have complicated effects on it. Taking saline lacustrine shale as an example, this study researched the effects of mineral composition on movable fluid porosity, based on nuclear magnetic resonance (NMR), focused ion beam (FIB), and x-ray diffraction (XRD) experiments. The results show that movable fluid porosity exhibits a stronger dependence on porosity than movable fluid saturation does. Micropores (<100 nm) and macropores (>1000 nm) are mostly developed in silicate and gypsum minerals, and have a highly heterogeneous distribution. In contrast, carbonate intercrystalline pores are dominated by mesopores (100−1000 nm), and behave strongly heterogeneously. Many mesopores play a positive role in generating highly movable fluid porosity, but the development of micropores and macropores is not conducive to an increase in movable fluid porosity. Overall, a significant negative effect is observed between silicate mineral content and movable fluid porosity, and carbonate mineral content has a strong positive effect on movable fluid porosity, whereas movable fluid porosity exhibits a relatively small reduction with an increase in the gypsum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.