Abstract

In this work, we investigated the effects of millimetric surface structures on dropwise condensation heat transfer under two different environments: pure vapor and an air-vapor mixture. Our experimental results show that, although convex structures enable faster droplet growth in an air-vapor mixture, the same structures impose the opposite effect during pure vapor condensation, hindering droplet growth. We developed a model for each case to predict the heat flux distribution along the structured surface, and the model shows reasonable agreement with experimental results. This work demonstrates that the effects of geometric features on dropwise condensation are not invariable but rather dependent on the scenario of resistances to heat and mass transfer in the system. The fundamental understanding developed in this study provides useful guidelines for condensation applications including power generation, desalination, dew harvesting, and thermal management.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.