Abstract

Traumatic brain injury (TBI) is a common cause of worldwide disability and mortality. Currently, the incidence and prevalence of TBI is markedly increasing and an effective therapy is lacking. Therapeutic hypothermia (32‑35˚C) has been reported to reduce intracranial pressure and induce putative neuroprotective effects. However, the underlying molecular mechanisms remain to be elucidated. The aim of the present study was to investigate the effects of mild induced hypothermia (MIH) on the expression of connexin 43 (Cx43) and glutamate transporter 1 (GLT‑1) in the hippocampus following TBI in rats. A rat model of TBI was created using a modified weight‑drop device, followed by 4 h of hypothermia (33˚C) or normothermia (37˚C). A wet‑dry weight method was used to assess brain edema and spatial learning ability was evaluated using a Morris water maze. The levels of Cx43 and GLT‑1 were detected by immunohistochemical and western blot analysis, respectively. The results demonstrated that MIH treatment improved TBI‑induced brain edema and neurological function deficits. In addition, therapeutic MIH significantly downregulated Cx43 expression and upregulated the levels of GLT‑1 in the hippocampus post‑TBI. These findings suggested that treatment with MIH may provide a novel neuroprotective therapeutic strategy for TBI through reversing the increase in Cx43 protein and the decrease in GLT‑1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.