Abstract

In this study we sought to determine the optimal brain temperature for treating compression-induced cerebral ischemia. Six cats each were treated with a deep-brain temperature of 37 degrees C (control), 33 degrees C (mild hypothermia), or 29 degrees C (moderate hypothermia). Intracranial pressure (ICP) and cerebral blood flow (CBF) were monitored, as were arteriovenous oxygen difference (AVDO2) and cerebral venous oxygen saturation (ScvO2). The cerebral metabolic rate of oxygen (CMRO2) was calculated. Extracellular glutamate concentration was measured by microdialysis. ICP was increased by inflation of an epidural balloon until CBF became zero. This ischemia was maintained for 5 min, after which the balloon was deflated. Mild hypothermia showed coupled CBF-metabolic suppression, but moderate hypothermia resulted in disproportionately increased AVDO2, decreased ScvO2, and low CBF/CMRO2 (relative ischemia). Reactive hyperemia after balloon deflation was decreased after both mild and moderate hypothermia, as was the tissue volume showing Evans blue dye extravasation. Extracellular glutamate increased in control animals, an effect most effectively suppressed in the mild hypothermia group. These data favor 33 degrees C as the optimal temperature for treating compression-related cerebral ischemia.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.