Abstract

The effects of microstructure on the creep behavior in a new developed Ni-Co base superalloy were investigated and two microstructures were obtained by different heat treatments. The results show that the air cooling microstructure, consisting of large spherical γ′ and small spherical γ′, resulted in a slow creep rate and small creep strain. While the slow cooling microstructure, consisting of large flowery γ′ and small spherical γ′, resulted in a fast creep rate and large creep strain. The γ channel and γ′ morphology are two main factors for these differences, the large γ channel and flowery γ′ in the slow cooling microstructure causing the dislocations slip easily in the γ matrix and cut into the γ′ precipitates with low stress.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.