Abstract

AbstractThe effects of microstructure on the compressive properties of aggregated alumina suspensions are determined by intentionally introducing heterogeneities into the suspension. Suspensions are prepared at a high volume fraction and diluted with low shear hand mixing to a series of initial concentrations. As the initial concentration is increased, larger heterogeneities are introduced, and the suspension becomes more compressible relative to the compressive yield stress of the uniform suspension. A simple model is proposed in which the heterogeneous suspensions compress by rearrangement of the dense aggregates until a critical concentration (ϕc, which coincides with the volume fraction prior to dilution) is reached. Above ϕc, the suspensions consolidate identically to the uniform suspension. With a single fitting parameter (the size of the heterogeneities), the model shows semiquantitative agreement with the experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.