Abstract

The nonlocal crystal plasticity finite element (CPFE) simulations and extreme value statistics were combined to study the effects of microstructure on the high cycle fatigue (HCF) behavior of dual-phase Ti alloy. A modified Armstrong-Frederick nonlinear kinematic hardening equation accounting for cyclic softening effect was employed in the crystal plasticity constitutive model. Three-dimensional equiaxed microstructure models and two-dimensional duplex microstructure models with real lamellar structure were generated based on Voronoi method, serving as statistical volume elements (SVEs). The effects of morphological and crystallographic features, including grain size, grain orientation, phase volume fraction and lamellae width, on the fatigue performance were investigated. By simulating multiple SVEs, extreme value distributions of the driving force for fatigue crack formation were predicted using Fatemi-Socie (FS) parameter as a fatigue indicator parameter (FIP). Meanwhile, whether the extreme values of geometrically necessary dislocation (GND) density can be taken as a FIP was discussed with compared to FS FIP. The GND density, related to local stress and strain gradient, has considerable potential as a FIP to estimate the fatigue performance of titanium alloys. Based on simulated results, it is suggested that microstructure with small grain size, low volume fraction of primary α grains, and thinner α lamellae width have the lowest probability of crack formation during HCF.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.