Abstract

ABSTRACT Nitrogen ion implantation with different dose rates was conducted on 8Cr4Mo4V-bearing steel in the present study. The effects of high-dose-rate nitrogen plasma immersion ion implantation (N-PIII) on the microstructure and nanohardness of the 8Cr4Mo4V-bearing steel were studied. The surface morphology, phase microstructure, lattice parameters and nanohardness were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD) and nanoindentation tests. The results showed that finer crystallite size, higher micro-strain and dislocation density can be achieved under high-dose-rate ion implantation and the dislocation density reaches the highest level of 1.71 × 1016 m−2 at a dose rate of 5.23 × 1017 ions cm−2 h−1. In addition, the high-dose-rate ion implantation results in changes in phase composition in the surface layer, and the Fe(M) peaks slightly shift to a lower angle. Moreover, the nanohardness of implanted samples improved notably, especially at a dose rate of 8.64 × 1017 ions cm−2 h−1, reaching the high value of 15.8 GPa, which is 42.1% higher than that of a non-implanted sample (11.1 GPa), implying that the properties of the samples were strongly affected by the implantation dose rate of nitrogen.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.