Abstract

Although large-volume metallic glasses (MGs) are susceptible to shear localization due to their intrinsically strain-softening response, recent experiments and molecular dynamics simulations have shown that small-volume MGs samples are able to exhibit work hardening response. Here, we seek to address two issues regarding the mechanical response of small-volume MGs at low homologous temperatures from a continuum-based modeling perspective: (1) are MGs capable of exhibiting a work hardening response, and (2) what is the physical mechanism which causes its work hardening response?Along with implementing a recently-developed finite-deformation, strain gradient plasticity-based constitutive model for MGs into a self-developed finite-element code, we study the tensile response of small-volume MG samples of various sizes through finite-element simulations. Our simulations show that small-volume MG samples are capable of exhibiting a work hardening response provided the following conditions are met: (a) the sample size is small enough, and (b) the appropriate microscopic boundary conditions for the free volume are imposed on the sample.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.