Abstract

The potential of microplastics (MPs) and nanoplastics (NPs) to act as a carrier for heavy metals derived from the environment is of rising concern to the health of global ecosystems. Here, we investigated the effects of particle size of polystyrene micro/nano plastics on the uptake, accumulation, and toxicity of As in rice seedlings in a hydroponic system. Significant differences in As uptake and accumulation in different plant tissue were observed between the plants co-exposed to 82 nm NPs + As and 200 nm MPs + As. The NPs + As co-exposure led to higher As accumulation in rice leaves (12.4–36.7 %), while larger sized MPs + As(V) treatment reduced As accumulation in rice leaves. Furthermore, the co-exposure of NPs/MPs + As mitigated the rice growth inhibition caused by As toxicity. These results will provide insight into elucidating the potentially effects of nano/microplastics on As uptake and accumulation in crop plants for assessing the hazards of micro-and nanoplastics as pollutants in the food chain and environment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call