Abstract

Microplastic surfaces could be colonized by microorganisms and form biofilms in aquatic ecosystem, which can participate in the nitrogen (N) and phosphorus (P) cycles. In this work, polypropylene squares were deployed in a pond for 30 days for microplastic biofilms colonization and then were transported to indoor microcosms at an environmental relevant level to study their effects on N and P cycling. Results showed that microplastic biofilms could accelerate ammonia and nitrite oxidation as well as denitrification. Presence of microplastic biofilms accumulated P temporarily and increased alkaline phosphatase activities (APA) in the system. Later in the experiment, disintegration of matured biofilms released N and P into the water. Mass balance calculation suggested possible N input caused by biological nitrogen fixation. Our results demonstrated that microplastics associated biofilms have the ability to alter the N and P cycling processes in aquatic system. However, additional works are required to further quantify the extent of such impact.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.