Abstract

Issues associated with accumulating microplastic (MP) in sewage sludge during wastewater treatment in a membrane bioreactor (MBR) system have not been studied in detail. Here, we investigated the microplastic’s effects on floc characteristics, microbial community compositions, and fouling behavior inside sequencing-batch MBRs. MBRs were operated with 0, 7, 15, and 75 MPs/L of feed for 124-days. Results indicated that MP presence decreased sludge floc size, floc hydrophobicity, and extracellular polymeric substance (EPS) molecular size, and increased EPS concentration and the floc’s negative zeta potential. These results were attributed to the facilitation of divalent cation (Ca2+ and Mg2+) uptake by MPs that weakened ion-bridging interactions within the sludge flocs. MPs accumulation slightly affected microbial structure and diversity. Relative abundances of dominant phyla, Actinobacteria, also decreased substantially. MPs also acted like a scouring material on membrane surfaces, inducing transformation of matured biofilm structures where protein content was substantially lower than nucleic acid content, in contrast to the control. Overall, MPs’ negative effects on sludge flocs were counteracted by their scouring effect; consequently, SB-MBRs operated up to 4 months did not suffer from severe cake fouling, compared to control.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.