Abstract

Effects of Cylindrotheca closterium, a marine benthic diatom, on the fate of di-n-butyl phthalate (DBP) in a water-sediment system were investigated. Model calculation results showed that DBP residue was 38.5% lower in the system with C. closterium than in the system without C. closterium. The net flux from water to sediment increased by 7.3 times in the presence of C. closterium. As a result, the total biodegradation flux of DBP in the system with C. closterium was increased by 25.6%. According to the 16 s rDNA sequencing, the presence of C. closterium decreased the bacterial population as well as bacterial community diversity in sediments. Moreover, the population of C. closterium, capable of efficiently degrading DBP, was much higher than that of the dominant DBP-degrading bacteria, demonstrating that degradation of DBP by C. closterium should be the main reason for the degradation enhancement in sediments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call