Abstract
In recent years, Fabric-Reinforced Cementitious Mortar (FRCM) has gained widespread application for strengthening reinforced concrete and masonry structures. This research investigated the influence of microfibre parameters on the tensile characteristics of FRCM, focusing on the fibre type, length, and volume fraction. Three distinct types of microfibres were scrutinized: amorphous metallic (AM) fibres, polyvinyl alcohol (PVA) fibres, and nylon fibres. FRCM coupons were designed and fabricated based on the AC434 standard. A tensile experimental program, following RILEM TC232-TDT, revealed the pronounced advantage of employing AM fibres in the pre-cracking stage by significantly improving the crack stress up to 226% and pre-cracking stiffness of FRCM. Conversely, synthetic fibres such as nylon and PVA were beneficial in the post-cracking stage by enhancing cracked stiffness, peak stress, and tensile toughness. Additionally, it was found that using fibres with shorter lengths improved the tensile behavior of FRCM composites in the post-cracking stage due to better random distribution in the cement-based matrix. Finally, an artificial neural network (ANN) model was proposed to predict the tensile parameters of the FRCM composites incorporating microfibres.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.