Abstract
Microcystin-LR (MC-LR) is one of the most notorious toxins liberated from cyanobacteria in eutrophicated freshwater ecosystems. Its effects on the bioaccumulation and toxicity of Cd 2+, CrO 4 2 − , Cu 2+, and Zn 2+ in a green alga Chlamydomonas reinhardtii were investigated in the present study. The metal bioaccumulation in the alga was unaffected by MC-LR. The surface-adsorbed and intracellular metal concentrations in the treatments with and without the addition of MC-LR could be well simulated by a single Freundlich isotherm for each metal with their accumulation ability following the order of Cu 2+ > Cd 2+ > Zn 2+ > CrO 4 2 − . The bioavailable metal concentrations measured by diffusion gradients in thin-films remained unchanged when MC-LR was applied. Accordingly, the growth of C. reinhardtii was similarly inhibited at the same metal concentration regardless of the addition of MC-LR. The metal toxicity could also be well delineated with the classic free ion activity and biotic ligand models. However, the intracellular metal concentration was found to have the best predictability suggesting its more direct relationship with metal toxicity. Metal exposure induced the accumulation of MC-LR in the alga, which was leveled off at high metal levels. The underlying uptake mechanisms need to be further examined.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.