Abstract

Premature senescence in greenhouse tomato is a significant challenge under long-season cultivation, due to suboptimal nutrient management during growth periods. We investigated the effects of microbial agents (T1), corn protein ferment (T2), and their combined application (T3) on photosynthetic characteristics and antioxidant enzyme activities in 'Saint Laurent 3689' tomato leaves, normal management served as the control (CK). We explored the physiological mechanism of delaying leaf senescence. Results showed that applying microbial agents or corn protein ferment individually led to improvements in leaf photosynthetic characteristics and antioxidant enzyme activities. The combined application yielded superior outcomes. Eighty days post the combined application of microbial agents and corn protein ferment (T3), chlorophyll (a+b) content, net photosynthetic rate, and the activities of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) in leaves increased by 16.4%, 30.9%, 23.4%, 33.0% and 40.3%, respectively, compared with the CK. Furthermore, plant height and stem diameter increased by 8.2% and 7.0%, while the total yield exhibited a significant increase of 9.9% compared with the CK 210 days post-treatment. In conclusion, the combined application of microbial agents and corn protein ferment has promising potential in enhancing chlorophyll content, net photosynthetic rate, and the activities of SOD, POD and CAT in tomato leaves. This approach effectively delayed leaf senescence, thereby promoting tomato growth and remarkably increasing the yield.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call