Abstract

A novel anaerobic baffled biofilm-membrane bioreactor (AnBB-MBR) with microaeration of 0.62 LO2/LFeed was developed to improve VFA and nitrogen removal from building wastewater. Three different membrane bioreactor systems — R1: AnBB-MBR (without microaeration); R2: AnBB-MBR with microaeration; and R3: AnBB-MBR with integrated microaeration and sludge recirculation — were operated in parallel at the same hydraulic retention time of 20 h and sludge retention time of 100 d. The microaeration promoted greater microbial richness and diversity, which could significantly enhance the removal of acetic acid and dissolved methane in the R2 and R3 systems. Moreover, the partial nitrification and the ability of anammox (Candidatus Brocadia) to thrive in R2 enabled NH4+-N removal to be enhanced by up to 57.8 %. The worst membrane fouling was found in R1 due to high amount of protein as well as fine particles (0.5–5.0 μm) acting as foulants that contributed to pore blocking. While the integration of sludge recirculation with microaeration in R3 was able to improve the membrane permeate flux slightly as compared to R2. Therefore, the AnBB-MBR integrated with a microaeration system (R2) can be considered as promising technology for building wastewater treatment when considering VFA and nutrient removal and an energy-saving approach with low aeration intensity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call