Abstract

Micro-/nano-hydroxyapatite (MHA/NHA) has been used to reduce the concentration of available heavy metals and increase soil pH in the remediation of heavy metal-contaminated soils. However, little is known about the effects of MHA and NHA on soil fungal communities and function. In this study, fungal community composition was characterized from copper-contaminated soils amended with MHA, NHA and three other classic amendments combined with Elsholtzia splendens during a 3-year immobilization experiment. High-throughput sequencing results showed that applications of MHA increased the richness and diversity of the fungal community, which was opposite the results of NHA. SIMPER analysis indicated that both the relative abundance of fungi associated with biosorption and plant growth promotion increased, whereas the relative abundance of fungi related to bioleaching and potential pathogens decreased after applying MHA. Redundancy (RDA) analysis revealed that the soil pH was a crucial environmental factor in the succession of fungal communities. In addition, the results of functional prediction via FUNGuild suggested that the application of MHA had the potential to reduce the risk of pathogens infecting animals and plants in the soil but that NHA had some environmental risks. Overall, fungal community showed a synergistic effect of immobilization with the test amendments, and MHA was better for the remediation of heavy metal-contaminated soils than the other test amendments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.