Abstract

The study of natural gas migration and accumulation of tight gas has become the focus of the energy industry in recent years. One of the priorities is the research of hydrocarbon migration carrier system of the formation. This study reveals two types of hydrocarbon carrier systems (micro-fractures and micro-coal lines) in the tight formation through a large amount of geological observations, data statistics, and simulations. This study also first put forward the view that the coal lines can be a type of hydrocarbon carrier system in tight sandstone formation. During the research process, an improved permeability testing method and apparatus are used to test the core permeability widely. Based on the real core, three models are established to describe the micro-fracture/micro-coal line characteristics. According to the three typical models, the Voronoi method is used to rebuild the network models. The migration and accumulation process in tight formation is simulated with the Multiple Relaxation Time lattice Boltzmann method in numerical simulation and with displacement apparatus in physical simulation. The results indicate that the micro-fracture/micro-coal line will significantly improve the percolation capacity of sandstone as the hydrocarbon migration carrier system in tight formation, the mechanism is revealed by numerical simulations. The micro-fractures/micro-coal lines are favorable for natural gas accumulation in tight formation. Unlike the conventional formation, in tight formation, micro-fractures/micro-coal lines tend to be the main migration carrier systems during the gas accumulation process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call