Abstract

Abstract Magnesium sulfate (MgSO4) is a salt that has the potential to damage portland cement-based materials. This paper argues that the mechanism of damage is dependent on the concentration of MgSO4 and reports the results of the change in the micromechanical properties of calcium-silicate-hydrate (C-S-H) when exposed to different MgSO4 concentrations . Different concentrations were selected starting from the concentration found in seawater and increasing up to 20 g/l, which is the concentration considered for accelerated tests. The micromechanical properties of C-S-H were probed using nanoindentation; X-ray diffraction measurements were also performed on C-S-H specimens. A Mori-Tanaka homogenization scheme was employed to upscale these results, yielding two homogenization levels. At low MgSO4 concentrations (2.2 and 4 g/l) the formation of brucite and gypsum crystals in the pore solution contributes to the overall magnitude of the elastic modulus of the specimen, while at higher concentrations of MgSO4 (10 and 20 g/l), decalcification of C-S-H is observed, which results in the degradation of C-S-H micromechanical properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.