Abstract

Zinc oxide (ZnO) has been attracting much attention because of its potential applications in photonic and optoelectronic devices. In this present study, we investigated the effect of MgO buffer annealing on the optical and electrical quality of P-MBE grown ZnO films on c-sapphire with MgO buffer layer. The optical quality was observed by low-temperature PL (photoluminescence) measurement in the near band edge emission region measured at 10K and at 77K. The emission line located at 3.368eV dominates the spectrum in both samples (ZnO with and without MgO buffer annealing) at 10K and 77K. This emission can be divided into two peaks, 3.367eV and 3.363eV and assigned as I2 (ionized donor bound excitons emission) and I4 (Hydrogen donor related emission), respectively. The relative intensity of these donor bound exactions to free exaction emission of the sample without MgO buffer annealing is greater than that of the sample with MgO buffer annealing. Comparison of the PL spectra of ZnO with and without annealing revealed that the intensity of free exciton emission from the sample with MgO buffer annealing is twice of that from the sample without annealing. We also found that the intensity of deep-level broad emission is reduced by about 1/3 by MgO-buffer annealing. Hence, the decrease of deep level emission intensity and the increase of free exciton emission intensity by annealing of MgO buffer corresponds to the reduction of defects of the ZnO film. The PL properties also suggest that there are fewer nonradiative recombination centers in ZnO layers with MgO buffer annealing than those in ZnO layers grown without MgO buffer annealing. The electrical quality was measured by room temperature Hall measurements. We found that the samples have a background n-type carrier concentration. The ZnO samples with MgO buffer annealing has a carrier concentration of 1.17×1017 cm-3 and Hall mobility of 120 cm2/V.s, while the ZnO sample without MgO buffer annealing has a carrier concentration of 2.63 × 1016 cm-3 and Hall mobility of 105 cm2/V.s. The improvement of electron mobility of ZnO films by MgO buffer annealing is due to a decrease in dislocation density. We conclude that annealing of MgO buffer layer increases the optical and electrical quality of the ZnO films. These results agree with the structural quality as observed by HRXRD.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.