Abstract

Sol-gel auto-combustion is a method of preparing ferrite by combining combustion with chemical gel. In this study, Ni-Mg-Co ferrite powders are prepared by coprecipitation method, and the nanocrystals of Ni0.2MgxCo0.8−xFe2O4 are successfully synthesized. The structure and magnetic properties of undoped and Mg-substituted Ni-Co ferrite nanoparticles are systematically investigated. The methods used to characterize the prepared samples are X-ray diffraction (XRD) analysis, Fourier transform infrared spectroscopy (FTIR), and Vibrating sample magnetometry (VSM). The synthesized samples are confirmed by XRD analysis to form a single-phase cubic spinel structure with crystals between 48 and 50 nm. With the increase of Mg ion concentration, the lattice constant decreases. The results of FTIR spectroscopy indicated that a spinel structure was formed. Transmission electron microscopy (TEM) images show spherical cubic microcrystals in the samples. EDX analysis confirms that the synthesized ferrite is pure phase structure, and Mg2+ is successfully replaced. With the increase of Mg2+ ion content, the saturation magnetization and remanent magnetization decreased from 70.16 to 39.77 emu/g and 36.40 to 20.20 emu/g at room temperature, respectively. Meanwhile, the coercivity decreases from 1032.16 to 378.50 Oe by increasing Mg2+ concentration. This also indicates that the Mg-substituted Ni-Co nano-ferrite has a low magnetic of multi-ferric material. The increasing of peak height of dM/dH at Hm indicates that the cubic spinel structure sample has good crystallinity and magnetic stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.