Abstract

Oxidative coupling of methane (OCM) is a reaction to directly convert methane into high value-added hydrocarbons (C2+) such as ethylene and ethane using molecular oxygen and a catalyst. This work investigated lanthanum oxide catalysts for OCM, which were promoted with alkaline-earth metal oxides (Mg, Ca, Sr, and Ba) and prepared by the solution-mixing method. The synthesized catalysts were characterized using X-ray powder diffraction, CO2-programmed desorption, and X-ray photoelectron spectroscopy. The comparative performance of each promoter showed that promising lanthanum-loaded alkaline-earth metal oxide catalysts were La-Sr and La-Ba. In contrast, the combination of La with Ca or Mg did not lead to a clear improvement of C2+ yield. The most promising LaSr50 catalyst exhibited the highest C2+ yield of 17.2%, with a 56.0% C2+ selectivity and a 30.9% CH4 conversion. Catalyst characterization indicated that their activity was strongly associated with moderate basic sites and surface-adsorbed oxygen species of O2–. Moreover, the catalyst was stable over 25 h at a reactor temperature of 700 °C.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.