Abstract

Regulation of the ryanodine receptor (RYR) by Mg(2+) and SR luminal Ca(2+) was studied in mechanically skinned malignant hyperthermia susceptible (MHS) and non-susceptible (MHN) fibres from human vastus medialis. Preparations were perfused with solutions mimicking the intracellular milieu and changes in [Ca(2+)] were detected using fura-2 fluorescence. At 1 mM cytosolic Mg(2+), MHS fibres had a higher sensitivity to caffeine (2-40 mM) than MHN fibres. The inhibitory effect of Mg(2+) on caffeine-induced Ca(2+) release was studied by increasing [Mg(2+)] of the solution containing 40 mM caffeine. Increasing [Mg(2+)] from 1 to 3 mM reduced the amplitude of the caffeine-induced Ca(2+) transient by 77 +/- 7.4 % (n = 8) in MHN fibres. However, the caffeine-induced Ca(2+) transient decreased by only 24 +/- 8.1 % (n = 9) in MHS fibres. In MHN fibres, reducing the Ca(2+) loading period from 4 to 1 min (at 1 mM Mg(2+)) decreased the fraction of the total sarcoplasmic reticulum (SR) Ca(2+) content released in response to 40 mM caffeine by 90.4 +/- 6.2 % (n = 6). However, in MHS fibres the response was reduced by only 31.2 +/- 17.4 % (n = 6) under similar conditions. These results suggest that human malignant hyperthermia (MH) is associated with reduced inhibition of the RYR by (i) cytosolic Mg(2+) and (ii) SR Ca(2+) depletion. Both of these effects may contribute to increased sensitivity of the RYR to caffeine and volatile anaesthetics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.