Abstract
The effects of methylmercury on the spontaneous and potassium-evoked release of endogenous amino acids from mouse cerebellar slices have been examined. Methylmercury induced a concentration-dependent increase in the spontaneous release of glutamate, aspartate, gamma-aminobutyric acid, and taurine from mouse cerebellar slices. Glycine release was slightly increased, but not in a concentration-dependent manner. The spontaneous release of glutamine from mouse cerebellar slices was not altered by any concentration of methylmercury examined (10, 20, and 50 microM). The tissue content of glutamate, gamma-aminobutyric acid, glutamine, and taurine decreased after exposure to methylmercury. Exposure of cerebellar slices to 20 microM methylmercury resulted in a significant enhancement in glutamate release during stimulation with 35 mM K+. This increase could be accounted for by the methylmercury-induced increase in spontaneous glutamate release. The increase in spontaneous release of glutamate and gamma-aminobutyric acid was independent of the availability of extracellular calcium. These results suggest that methylmercury increases the release of neurotransmitter amino acids, particularly gamma-aminobutyric acid and glutamate, by acting at intracellular sites to increase release from a neurotransmitter pool. The increase in the potassium-stimulated release of glutamate may reflect an increased sensitivity of the cerebellar granule cell to the effects of methylmercury. It is suggested that alterations in amino acid neurotransmitter function in the cerebellum may contribute to some of the neurological symptoms of methylmercury intoxication.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.