Abstract
The study, undertaken with the aim of further investigating the effects of methylmercury (MeHg) exposure on the developing brain, was performed in the cerebellum of chick embryos, chronically treated with a MeHgCl solution dropped onto the chorioallantoic membrane, and in control embryo cerebella. Quantitative evaluations, performed by cold vapour atomic absorption spectrophotometry, demonstrated a high mercury content in the chorioallantoic membrane, encephalon, liver and kidney of the treated embryos. The morphological observations showed severe neuronal damage consisting of degenerative changes of the granules and Purkinje neurons. The effects on astrocytes were even more severe, since they were extremely rare both in the neuropil and around the vessel wall. Compared with the controls, the cerebellar vessels of MeHg-treated embryos showed immature morphology, poor differentiation of endothelial barrier devices, and high permeability to the exogenous protein horseradish peroxidase. These findings support the hypothesis that MeHg-related neuronal sufferance may be secondary to astrocytic damage and suggest that the developmental neurotoxicity of this compound could also be related to astrocyte loss-dependent impairment of blood–brain barrier (BBB) differentiation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.