Abstract

1 Mechanisms of methyl p-hydroxybenzoate (methyl paraben) action in allergic reactions were investigated by measuring the intracellular Ca(2+) concentration ([Ca(2+)](i)) and histamine release in rat peritoneal mast cells (RPMCs). 2 In the presence or absence of extracellular Ca(2+), methyl paraben (0.1-10 mM) increased [Ca(2+)](i), in a concentration-dependent manner. Under both the conditions, methyl paraben alone did not evoke histamine release. 3 In RPMCs pretreated with a protein kinase C (PKC) activator (phorbol 12-myristate 13-acetate (PMA) 3 and 10 nM), methyl paraben (0.3-3 mM) induced histamine release. However, a high concentration (10 mM) of the agent did not increase the histamine release. 4 U73122 (0.1 and 0.5 micro M), an inhibitor of phospholipase C (PLC), significantly inhibited the methyl paraben-induced histamine release in PMA-pretreated RPMCs. U73343 (0.5 micro M), an inactive analogue of U73122, did not inhibit the histamine release caused by methyl paraben. 5 In Ca(2+)-free solution, PLC inhibitors (U73122 0.1 and 0.5 micro M, D609 1-10 micro M) inhibited the methyl paraben-induced increase in [Ca(2+)](i), whereas U73343 (0.5 micro M) did not. 6 Xestospongin C (2-20 micro M) and 2 aminoethoxydiphenyl borate (30 and 100 micro M), blockers of the inositol 1,4,5-trisphosphate (IP(3)) receptor, inhibited the methyl paraben-induced increase in [Ca(2+)](i) in Ca(2+)-free solution. 7 In conclusion, methyl paraben causes an increase in [Ca(2+)](i), which may be due to release of Ca(2+) from storage sites by IP(3) via activation of PLC in RPMCs. In addition, methyl paraben possibly has some inhibitory effects on histamine release via unknown mechanisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.