Abstract

Natural gas is a cheap and abundant fuel for solid oxide fuel cell (SOFC), generally integrating the SOFC system with methane pre-treating system for improving the stability of SOFC. In this paper, the accurate effects of methane processing strategy on fuel composition, electrical efficiency and thermal efficiency of SOFC are investigated based on the thermodynamic equilibrium. Steam reforming of methane is an endothermic process and can produce 3 mol of H2 and 1 mol of CO from 1 mol of methane, and thus the electrical efficiency of SOFC is high at the same O/C ratio and equivalent fuel utilization, whereas the thermal efficiency is low. On the contrary, partial oxidation of methane is an exothermal process and only produces 2 mol of H2 and 1 mol of CO from 1 mol of methane, and thus the electrical efficiency of SOFC is low at the same O/C ratio and equivalent fuel utilization, whereas the thermal efficiency is high. When the O/C ratio is 1.5, the electrical efficiency of SOFC is 55.3% for steam reforming of methane, while 32.7% for partial oxidation of methane. High electrical efficiency of SOFC can be achieved and carbon deposition can be depressed by selecting suitable O/C ratio from methane pretreatment according to the accurate calculation and analysis of effects of different methane processing strategies on the electrical efficiency and thermal efficiency of SOFC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.