Abstract
We theoretically analyze the thermoelectric properties of graphene quantum dot arrays (GQDAs) with line- or surface-contacted metal electrodes. Such GQDAs are realized as zigzag graphene nanoribbons (ZGNRs) with periodic vacancies. Gaps and minibands are formed in these GQDAs, which can have metallic and semiconducting phases. The electronic states of the first conduction (valence) miniband with nonlinear dispersion may have long coherent lengths along the zigzag edge direction. With line-contacted metal electrodes, the GQDAs have the characteristics of serially coupled quantum dots (SCQDs) if the armchair edge atoms of the ZGNRs are coupled to the electrodes. By contrast, the GQDAs have the characteristics of parallel quantum dots if the zigzag edge atoms are coupled to the electrodes. The maximum thermoelectric power factors of SCQDs with line-contacted electrodes of Cu, Au, Pt, Pd, or Ti at room temperature were similar or greater than 0.186 nW K−1; their figures of merit were greater than three. GQDAs with line-contacted metal electrodes have much better thermoelectric performance than surface contacted metal electrodes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.